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able 4
omparison of the geometric properties of the cells predicted by several theoretical models [15–18] and experimental data [20–22,30–32].

Description Percentage of polyhedral faces, n4, n5 and n6 Faverage

Kelvin cell [15] n4 = 43%; n5 = 0%; n6 = 57% 14
Williams cell [17] n4 = 14%; n5 = 57%; n6 = 29% 14
Weaire  and Phelan model [16,18] n4 = 0%; n5 = 89%; n6 = 11% 13.5
Soap  bubbles (Matzke [20]) Peripheral: n4 = 29%; n5 = 53%; n6 = 16% 11.0 (peripheral)

Central: n4 = 11%; n5 = 67%; n6 = 22% 13.7 (central)
Soap  bubbles (Monnereau et al. [21]) Upper bubbles: n4 = 29%; n5 = 52%; n6 = 18% 11.1 (upper bubbles)

Internal bubbles: n4 = 18%; n5 = 58%; n6 = 24% 13.5 (internal bubbles)
�-brass  grains n4 = 20%; n5 = 44%; n6 = 28% 14.5
Soap  bubbles n4 = 20%; n5 = 50%; n6 = 22% 13.0
Ammonium oleate foams n4 = 21%; n5 = 50%; n6 = 25% 13.0
Gelatin  foams (Desch [22]) n4 = 19–38%; n5 = 32–57%; n6 = 10–25% 9.0–11.0
Polyurethane foam (Kose [30]) n4 = 9%; n5 = 70%; n6 = 21% 13.6
Montminy et al. [31] n4 = 24%; n5 = 55%; n6 = 19% 13.0
Open  cell Ni foam (Dillard et al. [32]) n4 = 17.6%; n5 = 56.8%; n6 = 21.8% 13.0
FeCrAlY foams (Present investigation) n4 = 24–28%; n5 = 50–57%; n6 = 15–22% 11.3
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a b s t r a c t

Establishing the geometry of foam cells is useful in developing microstructure-based acoustic and struc-
tural models. Since experimental data on the geometry of the foam cells are limited, most modeling efforts
use an idealized three-dimensional, space-filling Kelvin tetrakaidecahedron. The validity of this assump-
tion is investigated in the present paper. Several FeCrAlY foams with relative densities varying between 3
and 15% and cells per mm (c.p.mm.) varying between 0.2 and 3.9 c.p.mm. were microstructurally evalu-
ated. The number of edges per face for each foam specimen was counted by approximating the cell faces
ells
eCrAlY
elvin cell
atzke cell

by regular polygons, where the number of cell faces measured varied between 207 and 745. The present
observations revealed that 50–57% of the cell faces were pentagonal while 24–28% were quadrilateral
and 15–22% were hexagonal. The present measurements are shown to be in excellent agreement with
literature data. It is demonstrated that the Kelvin model, as well as other proposed theoretical models,
cannot accurately describe the FeCrAlY foam cell structure. Instead, it is suggested that the ideal foam cell

aces
ell.
geometry consists of 11 f
with the 3–6–2 Matzke c

. Introduction

Aircraft engine noise is a major environmental concern espe-
ially in regions surrounding an airport during takeoff and landing
1]. Significant progress has been made since the advent of the
rst commercial jet engine-powered airplanes with current ultra-
igh bypass engines being much quieter than the first generation
ngines. For example, the effective perceived noise level in decibels
EPNdB) relative to the International Civil Aviation Organization’s
ICAO) Chapter 3 certification standards decreased from about +5
PNdB for aircraft engines developed in the 1960s to −5 EPNdB for
odern engines [2,3]. Despite this large improvement in engine

esign, there is still a great desire among policy makers and design-
rs to reduce noise much below current levels. For example, the
ational Aeronautics and Space Administration (NASA) has set
mbitious goals to further reduce aircraft noise by −52 db with
espect to the newly adapted ICAO’s Chapter 4 certification stan-
ards by the year 2020 under its Subsonic Fixed Wing (SFW) project
4]. It is expected that these noise reduction goals will be achieved

hrough a combination of design changes and development of suit-
ble materials [3,4].

Polymeric foams have been historically used for sound absorp-
ion in several applications [5]. More recently, metal foams are

∗ Tel.: +1 216 433 8195; fax: +1 216 433 5544.
E-mail address: sai.v.raj@nasa.gov

921-5093/$ – see front matter. Published by Elsevier B.V.
oi:10.1016/j.msea.2011.02.005
with 3 quadrilateral, 6 pentagonal faces and 2 hexagonal faces consistent

Published by Elsevier B.V.

being investigated for their flow resistance [6,7] and sound absorp-
tion properties [8–10]. Metal foams have been proposed for use
in jet engines as acoustic treatment over rotors [11], fan blades
[12] and other applications [13]. The acoustic and other properties
of foams are dependent on their relative density, �*/�s, where �*
and �s are the densities of the foam and the solid material, respec-
tively, and microstructure [5]. Simple formulae exist for correlating
relative density and some elements of the microstructure, such
as, ligament length and thickness [5–10]. However, due to diffi-
culties in controlling process variables, the microstructures of the
foams and their properties can vary by large amounts. Although
commercially manufactured foams are specified by pores per inch
(p.p.i.) and their relative densities, it is noted that the reported val-
ues of p.p.i. are not necessarily identical from one manufacturer to
another [14]. For example, some vendors identify the p.p.i. of their
products with that of the precursor polyurethane foam rather than
the finished product without accounting for metal shrinkage during
the manufacturing process.

In the case of metal foams used as acoustic liners in air-
craft engines, it is important to qualitatively and quantitatively
understand the role their microstructures play in affecting their
acoustic and mechanical properties. Since the complex three-

dimensional microstructures of the foams help to dissipate the
sound energy, it is evident that a quantitative analysis of the
foam microstructures would enable important correlations to be
determined between the microstructural features and the gas pres-
sure flow resistance as well as the sound absorption coefficients.

dx.doi.org/10.1016/j.msea.2011.02.005
http://www.sciencedirect.com/science/journal/09215093
http://www.elsevier.com/locate/msea
mailto:sai.v.raj@nasa.gov
dx.doi.org/10.1016/j.msea.2011.02.005
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Several FeCrAlY foam panels approximately 210 mm × 210 mm
in cross-sectional area and varying in thicknesses between 3.2
ig. 1. (a) Optical macrograph of a FeCrAlY foam with a nominal pore density of
.2 c.p.mm. (5 p.p.i.) and �*/�s = 3.3%; (b) polygonal representations of the faces, 1,
, 3 and 4 enclosed by the broken circle belong to the same cell.

hese correlations are essential for developing microstructure-
ased models for designing acoustic liners for aircraft engines.
articularly, establishing the three-dimensional topology of the cell
icrostructures of foams is important effectively to model fluid

ow through them and to understand their mechanical proper-
ies.

Modeling activities on foam cell structures fall into two broad
ategories: (a) idealized topological models based on minimizing
he ratio of the surface free energy to volume free energy that
an fill three-dimensional (3D) space; and (b) engineering models
ased on the actual reconstruction of the 3D foam microstructures.
mong the several possible idealized topological representations of

he foam microstructures [5], the three-dimensional, space-filling
elvin tetrakaidecahedron [5,15,16] is often favored for model-

ng the foam cellular network. This cell has 14 faces consisting
f 6 squares and 8 hexagonal faces. In other words, about 43%
f the faces are squares, 0% faces are pentagonal and 57% of the
aces are hexagonal. It is worth noting that other topological mod-
ls have been proposed, where pentagonal faces are incorporated
n the cell geometry [17,18]. The Kelvin model assumes that all
ells are all of the same size and volume so that the problem

ecomes one of determining the cell shape that can pack 3D space
esulting in a system with the lowest free energy [15]. In real-
ty, cells deviate from these ideal conditions, where they may be
istorted and their sizes and shapes non-uniform. Alternatively,
ecent computational models use actual 3D foam microstructures
ering A 528 (2011) 5289–5295

as an input to the model. However, these models require the avail-
ability of high-powered computational capabilities to handle the
large megabytes of input data representing the foam microstruc-
tures. The input data for these models are expensive to generate,
and the models tend to be rather complex. Since foam microstruc-
tures are complex, it is necessary to develop both the relatively
simple and elegant topological mathematical models, as well as,
the complex, but realistic, computational engineering models in
order to understand the microstructure-property relationships of
foams.

Several investigators have tried to evaluate the 3D shape of
fat cells [19], soap bubbles [20,21], grains [22–29] and foam cells
[30–33]. The measurement techniques used in these investigations
include conventional microstructural image analysis, serial section
metallography, optical and X-ray micro-computerized tomogra-
phy (�CT), magnetic resonance imaging (MRI), ultrasonic imaging
and laser confocal microscopy [14,34]. Most of these procedures
have advantages and disadvantages. The well-established quantita-
tive metallography techniques [23–29,34,35] are relatively simple,
inexpensive, and provide high resolution images which enable the
acquisition of a large amount of statistically relevant data with rel-
ative ease. However, these procedures are destructive in nature
and the 3D information of the microstructure can only be inferred
from the two-dimensional (2D) sections using well-developed
stereological methods [24,25,34,35]. The advent of powerful com-
puters and the availability of specialized software with capabilities
to reconstruct 3D images by “stitching” several closely spaced
2D images has enabled the recent development of several tech-
niques, such as optical tomography [21], MRI [30] and �CT [32],
for accurately reproducing the complex 3D foam microstructures.
The primary advantages of these methods is that the result-
ing 3D images along with quantitative information on the foam
microstructures can provide a realistic image of the 3D spatial dis-
tribution of the cells. In recent years, �CT is increasingly used to
characterize foam microstructures due to the advantages of using
3D reconstructed images as input to the computational engineering
models. Despite its relative popularity, it is time consuming, expen-
sive and a relatively small statistical sample size than conventional
metallographic methods [31,34]. The latter technique can reveal a
statistical summary of cell shapes but it is unlikely to establish the
volumetric distribution of space-filling cells unlike the 3D recon-
structed images. Thus, conventional metallography can identify
simple ideal cell shapes for easy mathematical modeling analy-
sis, whereas the 3D reconstructed images can be directly meshed
in a finite element analysis model for further analysis. However,
in all instances, it is necessary to be able to distinctly identify the
geometry of the cell faces.

The objectives of this investigation were to characterize the
microstructures of PORVAIR1 metal foams. Quantitative informa-
tion on ligament (or struts) dimensions, cell face dimensions, area
fractions of open and closed faces, geometric shapes of the cell
faces and distribution of ligament porosity were determined [36].
Specifically, the present paper reports statistical data on the geo-
metrical features of the cells faces to determine the validity of the
Kelvin [15] and other theoretical space-filling models [16–18] in a
comprehensive manner.

2. Experimental procedures
and 25.4 mm were procured from PORVAIR Fuel Cells Technology,

1 PORVAIR is the trademark of PORVAIR Fuel Cells Technology, Hendersonville,
NC.
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Fig. 2. Frequency histograms and cumulative frequencies showing the distributions of th
and relative densities.
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ig. 3. Comparison of the frequency histograms of the distributions of the number
f edges per face for soap bubbles [20,21], polyurethane foams [30,31], Ni foam [32]
nd a FeCrAlY foam with 0.2 c.p.mm. (5 p.p.i.) and �*/�s = 3.3%. The solid squares and
ssociated legends represent the theoretical values for the Kelvin tetrakaidechedron.

nc., Hendersonville, North Carolina. The c.p.mm. varied between
.2 (5 p.p.i.) and 3.9 (100 p.p.i.), whereas �*/�S varied between 3
nd 15%. Square specimens ∼25.4 mm × 25.4 mm in cross-sectional
imensions or 50 mm in diameter were wire electro-discharge
achined from these panels for metallographic analyses.
Preliminary attempts to study the shapes of the foam cells using

ither �CT with resolutions varying between 20 and 100 �m or an

utomated serial sectioning2 of a FeCrAlY foam specimen and the
ubsequent 3D reconstruction of the 2D sectioned images proved
o be unsatisfactory since the cell ligaments were indistinct in
he images. Instead, macrophotographs were obtained of the as-

2 The automated sectioning of the FeCrAlY foams and the 3D image reconstruction
as conducted by UES, Inc., Dayton, OH.
e number of edges per face for FeCrAlY foams with different values of cells per mm

received foam specimens (Fig. 1(a)). This technique allowed a 3D
visualization of the foam microstructure with several adjacent faces
of a cell being clearly demarcated (Fig. 1(b)). It is noted that Fig. 1(a)
is similar to the 3D reconstructed image of polymer foams [31]
except that the present imaging technique is faster and cheaper.
Quantitative metallographic measurements were conducted on
6–7 randomly selected areas for each foam specimen and a large
number of faces were measured to ensure that the measurements
were representative and to minimize measurement errors. The
number of edges per face was counted by assuming that the faces
could be approximated by regular polygons with the number of cell
faces measured varying between 207 for foams 0.2 c.p.mm. to 745
for 3.9 c.p.mm. This assumption was not always valid since some
faces were either circular or elliptical rather than polygonal and
the edges were often curved. In some instances, the edges of a face
curved out of the plane of view. In addition, two adjacent edges did
not meet always at a relatively sharp point but had a significant
curvature, while adjacent faces met at triple surfaces rather than
triple points in many instances. These issues complicated the mea-
surements and they are likely to add to the errors in measurements.
Nevertheless, by measuring a large number of faces, it was felt that
the errors in measurement would be minimized. It is noted that
a similar method was used by Montminy et al. [31] to analyze 3D
�CT images.

3. Results and discussion

Fig. 1(a) shows an optical macrograph of a FeCrAlY foam spec-
imen with a nominal cell density of 0.2 c.p.mm. (5 p.p.i.) and
�*/�S = 3.3%; Fig. 1(b) shows the corresponding polygonal repre-
sentations of the faces. The numbers identify the faces for tracking

purposes. The complex nature of the foam microstructures is self
evident in these figures. On close examination, it was observed that
several neighboring faces were part of the same cell. For example,
the faces numbered 1, 2, 3 and 4 enclosed by the broken circle rep-
resent the outer faces a single cell with some of the inner faces of the
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Fig. 4. A 3–6–2 eleven-hydra cell with 3 quadrilateral, 6 pentagonal and 2 hexagonal
faces [20]. The numbers represent the number of edges enclosing the cell face. The
blue solid lines representing the forward faces are identified by the blue lettering,
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FeCrAlY foams.
Since quantitative optical metallography gives 2D informa-

tion, the 3D topographical characteristics of the microstructure
hile the red broken lines representing the back faces are identified by the red
ettering. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of the article.)

ell visible in the background (Fig. 1(b)). The volume fractions of the
pen cells decreased while that of the closed cells increased with
ncreasing relative density. Since it was often difficult to clearly
iscern the boundaries of closed faces, only the shapes of the open
aces were demarcated in these measurements in order to min-
mize errors in measurement. The cells were generally equiaxed
rrespective of c.p.mm. and relative density.

Fig. 2(a–d) shows the frequency histogram and cumulative fre-
uency plots of the number of edges per face for four FeCrAlY foams.
n examination of Fig. 2(a–d) clearly establishes that 97% of the

aces were either four, n4, five, n5, or six, n6,-sided with over 50% of
he faces being five-sided. Less than 1% of the faces were triangular
nd less than 2% were heptagonal except in the case of foams with
.4 c.p.mm. (60 p.p.i.), which had about 4% heptagonal faces. The
verage values of the number of edges per face, N̄, were determined
o be 4.9 ± 0.7, 5.0 ± 0.8, 4.9 ± 0.8, and 4.9 ± 0.8 for the FeCrAlY
oams with actual values of �*/�S being 3.3% (0.2 c.p.mm.), 9.5%
2.4 c.p.mm.), 10.1% (3.1 c.p.mm.) and 9.3% (3.9 c.p.mm.), respec-
ively. The errors represent 95% confidence levels. Significantly,
hese observations were not influenced by either the relative den-
ities of the foams or the lineal cell densities.

Fig. 3 compares the present results with similar measurements
n soap bubbles [20,21], polyurethane foams [30,31] and Ni foam
32]. These literature data include measurements conducted on
oth surface and internal cells using different measurement tech-
iques. Table 1 compares the percentages of four, five, and six-sided

aces observed on the FeCrAlY foams with those reported for fat
ells [19], soap bubbles [20–22], �-brass grains [22], and foams
22,30–32]. It is noted that the data compiled in Table 1 were
btained by several different techniques ranging from simple visual
bservations to complex NMR and �CT 3D scans over a 90-year
eriod. Significantly, in all cases, more than 50% of the cell faces had
pentagonal geometry irrespective of the material and measuring

echnique used (Table 1 and Fig. 3). The present results fall well
ithin the range of other observations reported in the literature.
An examination of Fig. 3 shows that the Kelvin tetrakaidecahe-
ron model [15], which predicts 0% five-sided faces, is inconsistent
ith the experimental observations. The fact that the Kelvin model

ails to be consistent with the experimental results is not surprising.
Fig. 5. Variation of the average number of cell faces against the ratio of (a) quadri-
lateral to pentagonal, and (b) hexagonal to pentagonal faces. The regression line
through the data is represented by the solid line in (a). The present data on FeCrAlY
foams are compared with literature data [20–22,30–32].

This model is based on a mathematical conjecture that soap bubbles
and foam microstructures can be ideally represented by dividing
three-dimensional space into cells of equal volume in a manner
that follows Plateau’s rules for mechanical equilibrium and mini-
mization of the surface area [37]. It is noted that the Kelvin model
requires the arrangement of tetrakaidecahedron cells to be topolog-
ically ordered and spatially periodic to fill space. Real foams are far
from this ideal configuration since factors, such as residual stresses
due to processing methods, topological disorder [37], unequal cell
volumes, aperiodic spatial ordering of the cells [20], and thick liga-
ments and triple points, can influence the cell topology. Matzke [20]
studied 400 peripheral soap bubbles and observed that the largest
number of them possessed eleven-hedra cells with 3 four-sided, 6
five-sided and 2 six-sided faces (3–6–2)3 (Fig. 4). However, these
soap bubbles only constituted 17% of the total number of bubble
studied since twenty other shapes were observed. In contrast, 97%
of the cell faces in the FeCrAlY foams were either four, five or six-
sided. Therefore, it would be interesting to determine the number
of faces for the ideal cell representing the microstructures of the
can be determined from well established streology equations

3 This nomenclature of identifying the cells was suggested by Kraynik et al. [37].
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Table 1
Comparison of the percentages of four, five and six-sided faces observed in FeCrAlY foams with observations on fat cells [19], soap bubbles [20–22], �-brass grains [22], and
foams [22,30–32].

Description Measurement technique Percentage of polyhedral faces, n4, n5 and n6

Fat cells (Lewis [19]) Optical microscopy or visual n4 = 21%; n5 = 53%; n6 = 23%
Soap bubbles (Matzke [20]) Optical microscopy Peripheral: n4 = 29%; n5 = 53%; n6 = 16%;

central: n4 = 11%; n5 = 67%; n6 = 22%
Soap bubbles (Monnereau et al.
[21])

Optical tomography Upper bubbles: n4 = 29%; n5 = 52%; n6 = 18%;
internal bubbles: n4 = 18%; n5 = 58%; n6 = 24%

�-Brass grains
Soap bubbles
Ammonium oleate foams
Gelatin foams
(Desch [22])

Visual n4 = 20%; n5 = 44%; n6 = 28%
n4 = 20%; n5 = 50%; n6 = 22%
n4 = 21%; n5 = 50%; n6 = 25%
n4 = 19–38%; n5 = 32–57%; n6 = 10–25%

Polyurethane foams (Kose
[30]) (Montminy et al. [31])

NMR �CT n4 = 9%; n5 = 70%; n6 = 21%
n4 = 24%; n5 = 55%; n6 = 19%

Open cell Ni foam (Dillard et al.
[32])

�CT n4 = 18%; n5 = 57%; n6 = 22%

FeCrAlY foams (present
investigation)

Optical microscopy n4 = 25%; n5 = 57%; n6 = 15% (0.2 c.p.mm.;
�*/�s = 3.3%)
n4 = 24%; n5 = 54%; n6 = 18% (2.4 c.p.mm.;
�*/�s = 9.5%)
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23–29,34,35,38–40]. The number of faces per cell, F, the number
f edges per cell, E, and the number of vertices per cell, V, of the 3D
ell are related by the Euler equation [5,25,34,39] and they can be
etermined from N̄ using the Coxeter equations [41]

= 12

[6 − N̄]
(1a)

= 6N̄

[6 − N̄]
(1b)

= 4N̄

[6 − N̄]
(1c)

able 2 shows the calculated values of F, E, V, and the corresponding
xperimental values of N4, N5 and N6 for the four FeCrAlY foams.4

sing the measured values of N̄, the corresponding values of F cal-
ulated from Eq. (1a) are 11.0, 11.7, 11.1 and 11.4 for foams with
.2 (5 p.p.i.), 2.4 (60 p.p.i.), 3.1 (80 p.p.i.) and 3.9 c.p.mm. (100 p.p.i.),
espectively. Based on these results, the topological characteris-
ics of the ideal PORVAIR foam cell are: F = 11, E = 27 and V = 18,
hich satisfy Euler’s theorem (i.e. V − E + F = 2) with N4 = 3, N5 = 6

nd N6 = 2. These values are independent of relative density.
Table 3 compares the topological features of the FeCrAlY foams

ith several simple cell shapes [5], where C is the number of
ells. The topological characteristics of the FeCrAlY foams do not
gree with any of these simple geometries. Instead, they appear to
e closer to the topological structure of clathrates although more
etailed topological modeling needs to be conducted to establish
his possibility [42,43]. As noted above, Matzke [20] observed that

ost of the peripheral soap bubbles were eleven-hedra cells with
four-sided, 6 five-sided and 2 six-sided faces (3–6–2). Based on

he excellent agreement between the present results and Matzke’s
ata on peripheral soap bubbles [20] (Fig. 3) taken together with
he fact that the total number of faces for the FeCrAlY foams was
etermined to be 11 (Table 2), it is reasonable to suggest that the

leven-hedra 3–6–2 cell is the most representative of the FeCrAlY
oam cellular structure.

Table 4 shows the predicted [15–18] and the experimental
20,21,30] percentage distributions of polyhedral faces and the

4 In this paper, ni represents the percentage of faces with i edges, whereas Ni is
umber of such faces enclosing the cell.
n4 = 28%; n5 = 52%; n6 = 18% (3.1 c.p.mm.;
�*/�s = 10.1%)
n4 = 26%; n5 = 50%; n6 = 22% (3.9 c.p.mm.;
�*/�s = 9.3%)

average number of faces per cell, Faverage. As noted earlier, the data
were obtained by different methods on several materials over a
90-year period. The average value of F = 11.3 determined for the
FeCrAlY foam cells (Table 2) is in very good agreement with the
experimental observations on the peripheral [20] or upper [21]
soap bubbles and gelatin foams [22] for which the average number
of faces is about 11.

A close examination of Table 4 reveals that the present results
do not agree with the predictions of the three topological models
[15–18]. The Kelvin cell [15] does not possess any pentagonal faces,
whereas the Weaire–Phelan model [16,18,30] does not have any
quadrilateral faces, with the total number of faces being either 14
or 13.4, respectively. The Williams cell [17] with 14 faces possesses
14% quadrilateral, 57% pentagonal and 29% hexagonal faces. How-
ever, this model also does not agree with the present observations
on the FeCrAlY foams. This difference between the experimen-
tal results and the theoretical predictions is to be expected since
theoretical efforts mainly consider the surface and volume free
energy contributions to the total free energy [37]. As indicated
earlier, other factors can influence the final cell topology of real
foams. For example, the effects of residual stresses developed in
the foam panels during processing are not included in these the-
oretical derivations. Qualitatively, one can modify the Gibbs free
energy equation as follows:

�G = (�gv + �ge) × VC + �gs × SC (2)

where, �G, �gv, �ge and �gs are the changes in the total, volume,
residual strain and surface Gibbs free energies, respectively, VC is
the cell volume and SC is the surface are of the cell. It is important
to note that current theoretical models agree incorrectly assume
that �ge = 0 for real foams.

Table 4 shows that Faverage varied between 9.0 and 14.5
[20–22,30]. On further examination of the data, Faverage decreases
linearly with the increasing ratio, n4/n5 (Fig. 5(a))

Faverage = −5.1
(

n4

n5

)
+ 14.3 (R2

d = 0.461) (3)
where R2
d is the coefficient of determination. In contrast, it is inde-

pendent of n6/n5 (Fig. 5(b)). The regression Eq. (3) is represented
by the solid line in Fig. 5(a); the broken horizontal line in Fig. 5(b)
represents the average value of Faverage = 12.2 for all the data. Eq. (3)
predicts a value of Faverage = 14.3 for n4 = 0, Faverage = 9.2 for n4 = n5.
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Table 2
Calculated values of F, E, V, N4, N5 and N6 for FeCrAlY foams.

Linear cell density (c.p.mm.) �*/�s (%) F E V N4 N5 N6

0.2 (5 p.p.i.) 3.3 11.0 26.7 17.8 3 6 2
2.4 (60 p.p.i.) 9.5 11.7 30.0 20.0 3 6 or 7 2
3.1 (80 p.p.i.) 10.1 11.1 26.7 17.8 3 6 2
3.9 (100 p.p.i.) 9.3 11.4 26.7 17.8 3 6 2 or 3
Average 11.3 27.5 18.4 3 6 2

Table 3
Comparison of the geometric properties of FeCrAlY foam cells with those for simple polyhedra [5].

Cell shape Number of face shapes F E V C Remarks

3 4 5 6

Tetrahedron 4 – – – 4 6 4 1 Regular platonic solid
Triangular prism 2 3 – – 5 9 6 1 Packs to fill space
Square prism – 6 – – 6 12 8 1 Packs to fill space
Hexagonal prism – 6 – 2 8 18 12 1 Packs to fill space
Octahedron 8 – – – 8 12 6 1 Regular platonic solid
Rhombic dodecahedron – 12 – – 12 24 14 1 Packs to fill space
Pentagonal dodecahedron – – 12 – 12 30 20 1 Regular platonic solid
Tetrakaidecahedron – 6 – 8 14 36 24 1 Packs to fill space
Icosahedron 20 – – – 20 30 12 1 Regular platonic solid
3–6–2 cell – 3 6 2 11 27 18 1 FeCrAlY foam (present investigation)

Table 4
Comparison of the geometric properties of the cells predicted by several theoretical models [15–18] and experimental data [20–22,30–32].

Description Percentage of polyhedral faces, n4, n5 and n6 Faverage

Kelvin cell [15] n4 = 43%; n5 = 0%; n6 = 57% 14
Williams cell [17] n4 = 14%; n5 = 57%; n6 = 29% 14
Weaire and Phelan model [16,18] n4 = 0%; n5 = 89%; n6 = 11% 13.4
Soap bubbles (Matzke [20]) Peripheral: n4 = 29%; n5 = 53%; n6 = 16% 11.0 (peripheral)

Central: n4 = 11%; n5 = 67%; n6 = 22% 13.7 (central)
Soap bubbles (Monnereau et al. [21]) Upper bubbles: n4 = 29%; n5 = 52%; n6 = 18% 11.1 (upper bubbles)

Internal bubbles: n4 = 18%; n5 = 58%; n6 = 24% 13.5 (internal bubbles)
�-Brass grains n4 = 20%; n5 = 44%; n6 = 28% 14.5
Soap bubbles n4 = 20%; n5 = 50%; n6 = 22% 13.0
Ammonium oleate foams n4 = 21%; n5 = 50%; n6 = 25% 13.0
Gelatin foams (Desch [22]) n4 = 19–38%; n5 = 32–57%; n6 = 10–25% 9.0–11.0
Polyurethane foam (Kose [30])
(Montminy et al. [31])

n4 = 9%; n5 = 70%; n6 = 21% 13.6

55%; n
= 56.8

5 = 50

T
E
t
m
t
r

4

f
c
t
w
w
l
T
o
s
3
r
m
f

n4 = 24%; n5 =
Open cell Ni foam n4 = 17.6%; n5

(Dillard et al. [32])
FeCrAlY foams (present investigation) n4 = 24–28%; n

wo important points can be discerned from Fig. 5(a) and (b) and
q. (3). First, the experimental data in Fig. 5(a) are scattered around
he regression line described by Eq. (3) irrespective of the either the

aterials studied or the method used for determining the shape of
he cells. Second, the magnitude of Faverage depends only on the
atio n4/n5 and it is not influenced by variations in n6/n5.

. Summary and conclusions

A detailed microstructural analysis of several FeCrAlY metal
oams with relative densities varying between 3 and 15%, and linear
ell densities varying between 0.2 and 3.9 c.p.mm., was conducted
o evaluate the topology of the foam cells. The shapes of cell faces
ere evaluated by approximating the faces by regular polygons. It
as observed that between 24 and 28% of the cell faces were quadri-

ateral, 50–57% pentagonal, and 15 to22% hexagonal in morphology.
he present results are in excellent agreement with observations
n soap bubbles [20,21]. Based on Matzke’s observations [20], it is

uggested that the FeCrAlY foam cells had a total of 11 faces with
quadrilateral, 6 pentagonal and 2 hexagonal faces. Both sets of

esults do not agree with the 14-hedra Kelvin tetrakaidecahedron
odel [15], which only has 43 and 57% quadrilateral and hexagonal

aces, respectively. Neither do the present results agree with the
6 = 19% 13.0
%; n6 = 21.8% 13.0

–57%; n6 = 15–22% 11.3

Williams [17] and Weaire–Phelan models [16,18,30] models. The
present calculations show that the 3–6–2 cell, which probably best
describes the FeCrAlY foam cells, has 27 edges and 18 vertices. A
compilation of 90 years of experimental data reveals that the aver-
age number of cell faces decreases linearly with the increasing ratio
of quadrilateral to pentagonal faces. It is concluded that the Kelvin
model is not supported by these experimental data.
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